Approximate Inertial Manifold of Strongly Damped Wave Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertial manifolds of damped semilinear wave equations

© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...

متن کامل

Stochastic inertial manifolds for damped wave equations ∗

In this paper, stochastic inertial manifold for damped wave equations subjected to additive white noise is constructed by the Lyapunov-Perron method. It is proved that when the intensity of noise tends to zero the stochastic inertial manifold converges to its deterministic counterpart almost surely.

متن کامل

Numerical approximation of the LQR problem in a strongly damped wave equation

The aim of this work is to obtain optimal-order error estimates for the LQR (Linear-quadratic regulator) problem in a strongly damped 1-D wave equation. We consider a finite element discretization of the system dynamics and a control law constant in the spatial dimension, which is studied in both point and distributed case. To solve the LQR problem, we seek a feedback control which depends on t...

متن کامل

Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise

In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the existence of a compact random attractor for the random dynamical system associated with the equation.

متن کامل

Global Existence of Ε−regular Solutions for the Strongly Damped Wave Equation

In this paper, we deal with the semilinear wave equation with strong damping. By choosing a suitable state space, we characterize the interpolation and extrapolation spaces of the operator matrix Aθ, analysis the criticality of the ε-regular nonlinearity with critical growth. Finally, we investigate the global existence of the ε-regular solutions which have bounded X ×X norms on their existence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pure Mathematics

سال: 2015

ISSN: 2160-7583,2160-7605

DOI: 10.12677/pm.2015.56040